

Duct Averaging **Temperature Sensor**

TAS

Technical Data

Output	Direct resistance
Connections	2-wire screw terminals 0,5 to 2,5mm ²
Accuracy	±0,35°C platina, nickel (0-70°C) ±0,20°C thermistor (0-100°C)
Ambient temperature	-40+60°C
Probe	Nylon 12 2m x 8mm dia
Housing	IP65, ABS (fire reterdant)
Max. operating temp.	+120°C

Dimensions

Probe diameter	8 mm
Probe length	2,2 metres
Housing dia.	50 x 90 mm

Features

- Accuracy ±0,35°C (platina, nickel)
- Accuracy ±0,20°C (thermistor)
- 2,2 metres probe length
- Measuring across the air flow

Application

Duct Averaging Temperature Sensor TAS is used for measuring temperature in ducts where an average reading across the air flow is reqiured.

Design Features

The TAS sensing elements are housed in an 8 mm diameter nylon 12 tub, spaced at 0,5 m intervals along the standard 2,2 m length, which is terminated in an IP67 sensor head.

Ordering Codes

TAS NTC	Unitron, Trend, Honeywell Aquatrol, Thorn, Elesta, SIOX, Seachange
TAS PT100	Inu, Serck, IVT, Satt, SIOX, ABB
TAS PT1000	Unitron, Johnson, IVT, Exomatic, Honeywell, Serck, Diana, KTC
TAS TA	TAC
TAS NI1000	Sauter
TAS LGNI	Siemens Landis & Staefa QAA23, QAD21
TAS ALE	Alerton, Satchwell DDU1804, HoneywellTE200AD-6
TAS AND	Andover, York <40°C, Siebe (TS serie)
TAS SAT1	Satchwell see schedule
TAS SAT2	Satchwell see schedule
TAS SAT3	Satchwell DW1204, DW1202
TAS SAT4	Satchwell DO 2202
TAS ST30	Staefa T30
TAS ST1	Staefa T1
TAS SIE	Siebe
Options	
/5m	Supplement for probe length 5 metre

Supplement for probe length 5 metre

Automatikprodukter

Duct Averaging Temperature Sensor

Mounting

If the sensor is to be mounted outside, it is recommended that the unit be mounted with the cable entry at the bottom.

If the cable is fed from above then into the cable gland at the bottom, it is recommended that a rain loop be placed in the cable before entry into the sensor.

Remove the front cover by twisting the lid and separating from the main body.

Using the base of the housing as a template mark the hole centres.

Drill two pilot holes at 85 mm centres in the surface on which the transmitter is to be mounted, and fix the sensor with appropriate screws.

The housing is designed to make it easy for an electric screwdriver to be used if desired.

Feed the cable through the waterproof gland and terminate the cores at the terminal block.

Leaving some slack inside the unit, tighten the cable gland onto the cable to ensure watertightness.

Replace the lid after the electrical connections have been made.

Connections

Connections are made via a 2-way terminal block. The connections for a thermistor or an RTD element are polarity independent.

Dimensions

Installation and Connection Details

All connections to DDC controllers, data recorders etc. should be made using screened cable.

Normally, the screen should be earthed at one end only (usually the controller end) to avoid earth hum loops which can create noise.

Low voltage signal and supply cables should be routed separately from high voltage or mains cabling.

Separate conduit or cable trays should be used.

Where possible, the controller.s earth should be connected to a FUNCTIONAL EARTH, rather than the mains safety earth.

This will provide better immunity to high frequency noise. Most modern buildings have a separate earth for this purpose