

Nitrogen Dioxide, Toxic gas Fieldbus Detector - ModBus, BacNet

BNO2

Technical Data	Basic unit
Power supply	16 – 29 Vdc, reverse-polarity pro- tected
Power consumption	10 mA (0.24 VA), 24Vdc
Output for GCD bus	5 Vdc, 250 mA max. Overload, short-circuit and reverse- polarity protected
Temperature range	-20 °C to +50 °C
Humidity range	15 - 90 % r.H non-condensing
Storage temperature	5 °C to 30 °C (41 °F to 86 °F)
GCD bus interface	1-wire / 19200 Baud
Field bus interface	RS 485 / 19200 Baud
Tool bus interface	2-wire / 19200 Baud
Mounting Height	0.2 m above floor
Field bus	Screw-type terminal min. 0.25 mm ² , max. 2.5 mm ²
Local bus for sensor	3-pin connector
Directives	EMC directives 2004/108/EC CE Conformity to: EN 50271 EN 61010-1:2010 ANSI/UL 61010-1 CAN/CSA-C22.2 No. 61010-1
Housing	90 x 130 x 57 mm

Features

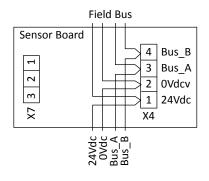
- Digital measurement value processing incl. temperature compensation
- Internal functional control with integrated Hardware Watchdog
- Data / measured values in μC Sensor, therefore simple exchange of sensor uncalibrated <> calibrated
- Software according to SIL2 compliant development process
- Modular technology (plug-in and replaceable)
- Easy maintenance and calibration by exchange of the sensor cartridge or by comfortable on-site calibration
- Serial RS 485 interface with protocol for CGD06 Modbus and BacNet.
- IP 65 version

Application
The Fieldbus Detector is used for integration in bus network.
Design Features
The detector provides the power supply of the sensors and makes the measured data available for digital communication.
Communication with the CGD06 controller takes place via the RS 485 fieldbus interface with CGD06 protocol.
Other communication protocols as Modbus and BacNet for direct connection to superordinate BMS are available.
The sensor is connected to the local bus via a plug connection enabling simple exchange instead of an on-site calibration.
The internal X-Change routine recognizes the exchanging process and the exchanged sensor and starts the measurement mode automatically.
An LED indicates the correct procedure of the exchange operation.
As an alternative, the on-site calibration via the CGD06 Service Tool can be performed with the integrated, comfortable calibra- tion routine.
Ordering Codes

oracing coa		
BNO2 010M	ModBus	0-10 ppm 16-29Vdc
BNO2 010B	BacNet	0-100ppm 16-29Vdc
BNO2 010C	CGD-bus	0-10 ppm 16-29Vdc
XNO2 0100	Sensor Head (Repl.)	0-10 ppm for exchange (2 years)

Cont'd on p. 2

Nitrogen Dioxide, Toxic gas Fieldbus Detector - ModBus, BacNet


BNO2

Technical Data	Sensor	Ordering Co	Ordering Codes, cont'd				
Electrical		BNO2 030M	ModBus	0-30 ppm 16-29Vdc			
Power supply	5 Vdc from sensor board, reverse	BNO2 030B	BacNet	0-30 ppm 16-29Vdc			
	polarity protected	BNO2 030C	CGD-bus	0-30 ppm 16-29Vdc			
Power consumption:	50 mA, max. (1.0 VA)	XNO2 030	Sensor	0-30 ppm for exchange (2 years)			
Serial interface local bus	1-wire / 19200 Baud	(M, B, C) ¹	Head (Repl.)				
Sensor element	Electrochemical	BNO2 500M	ModBus	0-500 ppm 16-29Vdc			
Measuring range	0 – 10, 0 - 30, 0 - 500 ppm	BNO2 500B	BacNet	0-500 ppm 16-29Vdc			
Accuracy	± 0.5 ppm	BNO2 500C	CGD-bus	0-500 ppm 16-29Vdc			
Resolution	0.1 ppm	XNO2 300	Sensor	0-500 ppm for exchange (2 years)			
Repeatability	< ± 2 % sig.	(M, B, C) ¹	Head (Repl.)				
Response time t ₉₀	≤25 sec.						
Zero point variation	± 0.2ppm	BBUZ	Built-in buzze	er			
Zero Drift	< 2 % signal / month	BBUZ LED	Buzzer with b	ouilt-in LED indication			
Zero Gain	< 2 % signal / month	BDUCT	Duct Kit				
Pressure range	Atmospheric ± 20 %	DR 24/30	Power supply	y 24Vdc			
Sensor life time	2 years / normal ambient conditions	BSTAIN	Option, stain	C C			
Calibration interval ¹	12 months	REG	0	ulator, flow adjustment to 0.5 I/min			
Storage temperature	+ 5 to + 30 °C (41 to 86 °F)	GAS	Calibration Gas 17 liters				
range	. ,	GKIT	Calibration K	it			
Warranty	1 year on material (without sensor						
	element)	Alarm Units					
¹ Manufacturer-recommended calibrati	on interval for normal environmental conditions.	ΔΔ\// 24	Warning Hor	n 24Vdc 98dB			

Manufacturer-recommended calibration interval for normal environmental conditions.

0,10	
GKIT	Calibration Kit
Alarm Units	
AAW 24	Warning Horn 24Vdc 98dB
AAW 230	Warning Horn 230Vac 98dB
OA 24	Flashlight 24Vdc, red
OAW 24	Combined Warning Horn/Flashlight, 24Vdc 98dB
OAW 230	Combined Warning Horn/Flashlight, 230Vac 98dB
OAW 24T	Combined Warning Horn/Flashlight with reset button, 24Vdc 98dB
Warning Plate	
Gas Alarm	Flashing gas alarm plate "GASALARM" 24Vac/dc
SP 600	Impact Protection

Electrical connection

EU directives

Special protection for people and buildings. The units are manufactured in accordance with the rules and directives such as EN50545.

Products delivered by the AP meets and exceeds the requirements of the new European standard EN50545.

Safety functions control devices for connection warnings regarding functionality and open circuit - day and night. Level SIL2 according to EN 50271.

Apr. 16

Gas monitoring and ventilation control in parking areas

Gas monitoring in parking areas meets two main needs:

- To give a warning when the amount of harmful gases reaches an unhealthy level.
- To ensure that the ventilation control is done in the best and most profitable way, ie for fresh air needs.

Hazardous gases

Petrol and diesel exhaust fumes emit harmful levels of nitrogen dioxides (NO₂), hydrocarbons (CH) and carbon monoxides (CO).

As a rule only carbon monoxides and nitrogen dioxides are monitored in parking areas since it is often (wrongly) believed that other gases do not reach harmful levels.

Carbon monoxide is a highly dangerous toxic gas (see table at the top of page 5).

Nitrogen dioxide is a carcinogen.

When considering monoxide from gas monotoring persective it is appropriate to have two alarm levels, where one level, occurs at about 20 ppm, and the other at about 35 ppm.

A gas alert sign or similar can warn of unhealthy carbon monoxide levels at the lower alert level. At the higher alert level, ie critical alarm level, it may be appropriate to allow the system to activate a warning siren.

A detector density of at least 1 detector/400 $\ensuremath{\mathsf{m}}^2$ is would be appropriate.

In case there are diesel vehicles in the parking area, it is important to take other harmful gases into consideration, such as nitrogen oxides and hydrocarbons.

In cases described above, specific monoxide detectors cannot cover the detection needs. Detectors that can detect these gases are required, eg, the GNO, gas detector.

Application areas

- Car repair shops
- Trucks/Indoor
- Parking areas
- Tunnels
- Mines
- Ice Hockey Rinks
- Bus/Lorry Terminals
- Generator rooms
- Garages

Ventilation control

The minimum requirement to be set in ventilation control is to make certain that the gas monotoring facility affects the ventilation in such a way that if harmful gas concentrations occur, the fresh air intakes must increase in order to reduce gas concentrations to reach harmless levels.

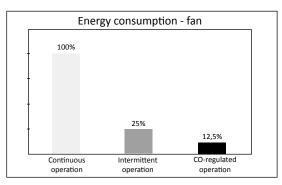
A well-regulated demand controlled ventilation in a parking area not only improves the air quality but it also minimizes the energy consumption by avoiding unnecessary ventilation.

Optimal ventilation with regard to gas concentrations can usually be

achieved by regular ventilation.

In a modern gas monitoring facility there are functions both for alarms (two levels) and controls for air evacuation.

The control options in the gas monitoring facility can be adapted to the control modes of most ventilation facilities.


The gas monotoring facility allows for incrementally controlled ventilation.

Example:

At low load, ventilation is running at 1/2-power. If the gas concentration exceeds 20 ppm (level 1), the sensors react and ventilation is controlled is switched over to the 1/1 power.

Staff Alarm - e.g. warning by sirens in the parking area - is given when the concentration exceeds 35 ppm (level 2).

Stepless control via frequency converter controller or via DDC/PLC gives the best energy savings.

By monotoring CO levels and only running the fans when necessary the CO detector becomes a significant energy saver.

Normally parking area ventilation need only be operational in 2 out of 24 hours, which naturally saves a great deal of energy.

Poisoning Hazard

There are several gas that when released in the air uncontrolled can poison and kill people. Common poisonous gases in industry are e.g. ammonia, carbon monoxide and hydrogen sulphide (all the examples listed are also flammable).

Experts within occupational health and medicine estimate the gas concentrations for harmful gases when the adverse impacts are minor.

In Sweden, these so called hygienic levels are set and updated by the Swedish Work Environment Authority.

A distinction is made between the maximum exposure limit, i.e. the maximum value for a 15-minute average exposure, and the exposure limit value, i.e. the maximum value for an 8-hour average exposure.

When monotoring gas it is advisable to let the hygienic exposure limit values provide indications for the choice of alarm levels.

This does not mean however that you necessarily need to adhere to the above described levels.

Alarm levels should be chosen according to how dangerous the gas is and the particular installation conditions.

	How carbon monoxide affects people							
Vol-%	ppm	Contact duration	Symptom med möjliga följder					
0.02	200	2-3 h	Light headache					
0.04	400	1-2 h	Severe headache (forehead)					
0.08	800	45 min 2 h	Malfunctions in the body Unconsciousness					
0.16	1600	20 min 2 h	Malfunctions in the body Death					
0.32	3200	5-10 min 30 min	Malfunctions in the body Death					
0.64	6400	1-2 min 10-15 min	Malfunctions in the body Death					
1.28	12800	1-3 min	Death					

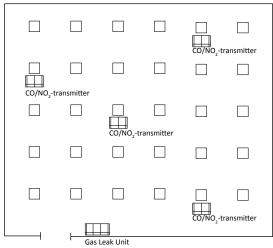
Emission values for different engine types, as well as hygienic exposure limits of the gases									
GAS	Impurities	s (g/kg fuel)	caused by	ppm content	ent ppm content	Hygienic limits			
	petrol	ol and diesel engines		petrol exhausts diesel exhaust	diesel exhausts	ppm	mg/m³	ppm	mg/m³
						8 h	8 h	15 min	15 min
NO ₂	25	10,5	42	100-200	2000	25	30	-	-
СО	155	12	13	20000-60000	1000	35	39	50	55
СН	15	6	4	200-1500	500	25-1000			

By using gas detectors with an analog output, 4-20 mA, which sends the signal to a computerized control, regulation and monitoring system, the ventilation control is done in a more refined manner.

Depending on the capacity of the computerized system, the ventilation can be controlled continuously instead of stepwise. One can have a throttle control, optional time delays, breakdown of the ventilation into zones, etc.

and hygienic exposure limits. Gas concentration in ppm (parts per million).								
Gas	Lethal dose 5-10 min duration	Severe poisoning	Tempo- rary trouble	Max exp. lim.	Av. exp. lim.			
Ammonia (NH ₃)	5.000	2.500	250	50	25			
Carbon monoxide (CO)	7.000	2.000	1.000	100	35			
Petrol	20.000	7.500	3.000	-	200*			
Acetylene	500.000	250.000	100.000	-	-			
* Refers to mg/m ³								

The impact of various gases and vapours on people


Installation exemple

nstallation in parking area with mechanical ventilation at $40 \times 40 \text{ m}$ (1600m²).

BNO2

The CO-detectors are placed at 140-180 cm above the floor, evenly distributed over the area, with consideration taken for walls and section dividers.

As a rule of thumb there should be one detector per $400m^2$, the exact number depending on the shape of the area.

We cannot be held responsible for errors in the manual/datasheet and reserve the right to correct any errors and to make product improvements, which may affect the accuracy of the manual/datasheet, without prior notice.