





# **Technical Data**

| Power Supply                                                                                                                             | 24Vac (± %5), 50-60 Hz<br>1435Vdc                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Power Consumption                                                                                                                        | < 2.5 W                                                                                                       |
| Current Output<br>Voltage Output                                                                                                         | 420 mA, maximum 500 Ω<br>010 Vdc, minimum 1.000 Ω<br>05 Vdc, minimum 1,000 Ω                                  |
| Relay Output                                                                                                                             | Max rating 1A@230V                                                                                            |
| Accuracy                                                                                                                                 | ±3 % for 0300 ppm<br>±3 % for 01,000 ppm                                                                      |
| Т90                                                                                                                                      | < 50 sec.                                                                                                     |
|                                                                                                                                          |                                                                                                               |
| Life time                                                                                                                                | 10 years expected                                                                                             |
| Life time<br>Drift                                                                                                                       | <b>10 years expected</b><br>< 5% per year                                                                     |
|                                                                                                                                          |                                                                                                               |
| Drift                                                                                                                                    | < 5% per year                                                                                                 |
| Drift<br>Resolution                                                                                                                      | < 5% per year<br>0.5 ppm                                                                                      |
| Drift<br>Resolution<br>Repeatability                                                                                                     | < 5% per year<br>0.5 ppm<br>± 2%                                                                              |
| Drift<br>Resolution<br>Repeatability<br>Baseline                                                                                         | < 5% per year<br>0.5 ppm<br>± 2%<br>< 5 ppm                                                                   |
| Drift<br>Resolution<br>Repeatability<br>Baseline<br>Filter capacity                                                                      | < 5% per year<br>0.5 ppm<br>± 2%<br>< 5 ppm<br>> 20.000 ppm per hour                                          |
| Drift<br>Resolution<br>Repeatability<br>Baseline<br>Filter capacity<br>Operating Temperature                                             | < 5% per year<br>0.5 ppm<br>± 2%<br>< 5 ppm<br>> 20.000 ppm per hour<br>-20+50°C                              |
| Drift<br>Resolution<br>Repeatability<br>Baseline<br>Filter capacity<br>Operating Temperature<br>Operating Humidity                       | < 5% per year<br>0.5 ppm<br>± 2%<br>< 5 ppm<br>> 20.000 ppm per hour<br>-20+50°C<br>1590 %rH                  |
| Drift<br>Resolution<br>Repeatability<br>Baseline<br>Filter capacity<br>Operating Temperature<br>Operating Humidity<br>Operating Pressure | < 5% per year<br>0.5 ppm<br>± 2%<br>< 5 ppm<br>> 20.000 ppm per hour<br>-20+50°C<br>1590 %rH<br>9001,100 mbar |

cont'd on p. 2

## Features

- LCD display
- Replaceable sensor cell
- Simple and fast mounting
- Modbus version
- Long sensor life time (10 years)
- Easy maintenance and calibration by exchange of the sensor unit or by comfortable on-site calibration
- Selectable analog outputs
- Wi-Fi Option
- Two universal and relay inputs (option)
- Early fire detection
- Mounting height, appr. 1.5 m above floor
- Coverage: Appr. 400 m<sup>2</sup> garage application as a rule of thumb
- Accuracy unaffected by poisoning

### **Design Features**

Detector unit including digital value processing, temperature compensation and self control for the continuous monitoring of the ambient air.

The detector unit houses a module with a micro Controller, analog output, relay output and power supply in addition to the electrochemical sensor element including amplifier.

The micro Controller calculates a linear 4 - 20 mA or 0 - 5Vdc and 0 - 10Vdc signal out of the measurement signal and also stores all relevant measured values and data of the sensor element.

### Application

For detection of carbon monoxide (CO) within a wide range of commercial applications such as

- vehicle exhaust in parking structures (e.g. underground garages) and engine repair shops
- tunnels
- loading bays
- engine test benches
- shelters
- go-kart race courses etc.

Due to the standard analogue signal the CO detector is compatible with any electronic analogue control, DDC/PLC control or automation system.

|          | Ordering Codes |                                                |  |  |
|----------|----------------|------------------------------------------------|--|--|
|          | Wall           |                                                |  |  |
| on p. 2  | COW 13FO       | 0 - 50, 0 - 100 or 0 - 300 ppm, 0-10Vdc/4-20mA |  |  |
| 011 p. 2 |                | cont´d on p. 2                                 |  |  |

Technical data, cont'd



Dec. 18

| CO measuring range |             | 0300 ppm                        | Ordering Cod | es, cont'd                              |
|--------------------|-------------|---------------------------------|--------------|-----------------------------------------|
|                    |             | 01.000 ppm                      | COW 13F0D    | COW 13FO with display                   |
| Terminals          |             | Pluggable screw terminal        |              |                                         |
|                    |             |                                 | COW 13M      | 0 - 50/100/300 ppm, modbus RTU          |
| Cable              |             | maximum 1.5mm²                  | COW 13MD     | As COW 13M + display                    |
|                    |             |                                 | COW 13DR     | As COW 13M + display and relay output   |
| Cable Gland        |             | M16 or PG9                      | COW 1351MDR  | As COW RD + 0-10Vdc/4-20mA and modbus   |
|                    |             |                                 |              |                                         |
| Protection (       | •           | IP65/IP41 (probe)               | Duct         |                                         |
| Protection (       | lass, Room  | IP340                           | COD 13F0     | 0 - 50/100/300 ppm, 0-10Vdc/4-20mA      |
| EMC Directi        | ve          | EN 61326-1 CE1701               | COD 13F0D    | As COD 13FO + display                   |
|                    |             |                                 | COD 13M      | As COD 13FO + modbus RTU                |
| Dimensions         | - wall/duct | enclosure 98.0 x 81.5 x 45.5 mm | COD 13MD     | As COD13M + display and Modbus RTU      |
|                    |             | probe ø 12 mm x 46.5 mm         | COD 13DR     | As COD13M + display and relay output    |
| Dimensions         | - room      | enclosure 80.0 x 80.0 x 34.2 mm | COD 1351MDR  | As COD 13RD + 0-10Vdc/4-20mA and modbus |
|                    | Wall        | 229 gr                          | Room         |                                         |
| Weight             | Room        | 82 gr                           | COR 13F0     | 0 - 50/100/300 ppm, 0-10Vdc/4-20mA      |
| -                  | Duct        | 250 gr                          | COR 13M      | 0 - 50/100/300 ppm, modbus RTU          |

## Other measuring ranges on request

On request, the passive measuring elements NTC1,8K, NTC 10K, NTC 20K, Pt1000 can be mounted in one or two alternative active 0-10Vdc. Analogue output signals can be delivered in addition to the above with 0-10Vdc, 2-10Vdc, 0-5Vdc, 1-5Vdc or 4-20mA. Two analog outputs can be configured (option)

Cross sensivities may not be linear and should not be scaled either.

The values given are only for information and should not be used as

Data based on gasing for 5 minutes using test equipment.

| Test Cas         | Test Cas Canadatian    | CO Faulturelant |
|------------------|------------------------|-----------------|
| Test Gas         | Test Gas Concentration | CO Equivalent   |
| Carbon Monoxide  | 100                    | 100             |
| Hydrogen Sulfide | 50                     | 0               |
| Sulphur Dioxide  | 20                     | 0               |
| Hydrogen         | 100                    | 40              |
| Nitric Oxide     | 50                     | 0               |
| Ethanol          | 200                    | < 2             |
| Ammonia          | 50                     | 0               |
| Chlorine         | 15                     | 0               |
| Ethylene         | 100                    | 0               |
|                  |                        |                 |

### Alarm levels - garage

**Cross Sensivity** 

a basis for cross calibration.

Pre-alarm warning level set at **20 ppm** Critical alarm level set at **25 ppm** 

### **General Notes**

- 1. High density of some other gases may effect the reading.
- 2. Observe maximum permissible cable lengths.
- 3. If cable runs parallel to the mains cable: Use shielded cables.
- 4. Never test with flammable gases.
- 5. The cable entry always should have to be pointing downwards.

The above combinations can be made with: Modbus, LCD, Relay outputs, PID output, one or two temperature inserts.

| HSG                | Impact/vandal protection for gas detectors                    |  |
|--------------------|---------------------------------------------------------------|--|
| Alarm units        |                                                               |  |
| AAW 24             | Warning siren, 24Vdc 98dB                                     |  |
| AAW 230            | Warning siren, 230Vac 98dB                                    |  |
| OA 24R/Y/B/G       | Warning siren 24Vdc 98dB,<br>red/yellow/blue/green            |  |
| OAW 24R/Y/<br>B/G  | Flashlight 24Vdc,<br>red/yellow/blue/green                    |  |
| OAW 230R/Y/<br>B/G | Warning siren/flashlight, 230V 98dB,<br>red/yellow/blue/green |  |
| VCAGE              | Impact protection for Warning siren/flashlight                |  |

- 6. The data indicated under 'Technical Data' apply only to vertically mounted transmitters.
- Duct type transmitters should be far away from humidifiers, min. 2 meters. (Duct version on request).
- 8. Room and Wall type transmitters should have to be mounted in the center of wall but not near to any windows. (Room version on request)



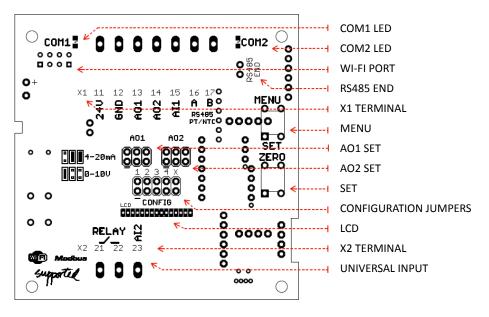
# **Output Jumpers**

- 1. There is no output jumper for the fixed output types
- 2. Please check if there is any special Jumper Instruction in the enclosure
- 3. Range Jumpers for AO1 and AO2 have same specifications

| St           | andard                                            | Option     |                                                |  |
|--------------|---------------------------------------------------|------------|------------------------------------------------|--|
| AO1 Output 1 |                                                   | AO2        | Output 2                                       |  |
| no jumpers   | fixed at the factory<br>according to your request | no jumpers | fixed at the factory according to your request |  |
| AO1          | 010V<br>jumper selection                          | AO2        | 010V<br>jumper selection                       |  |
| AO1          | 420mA<br>jumper selection                         | AO2        | 420mA<br>jumper selection                      |  |

# **CONFIG Jumpers**

- 1. Never use the jumper X at CONFIG..!
- 2. Please check if there is any special Jumper Instruction in the enclosure
- 3. There is no jumper for fixed range models

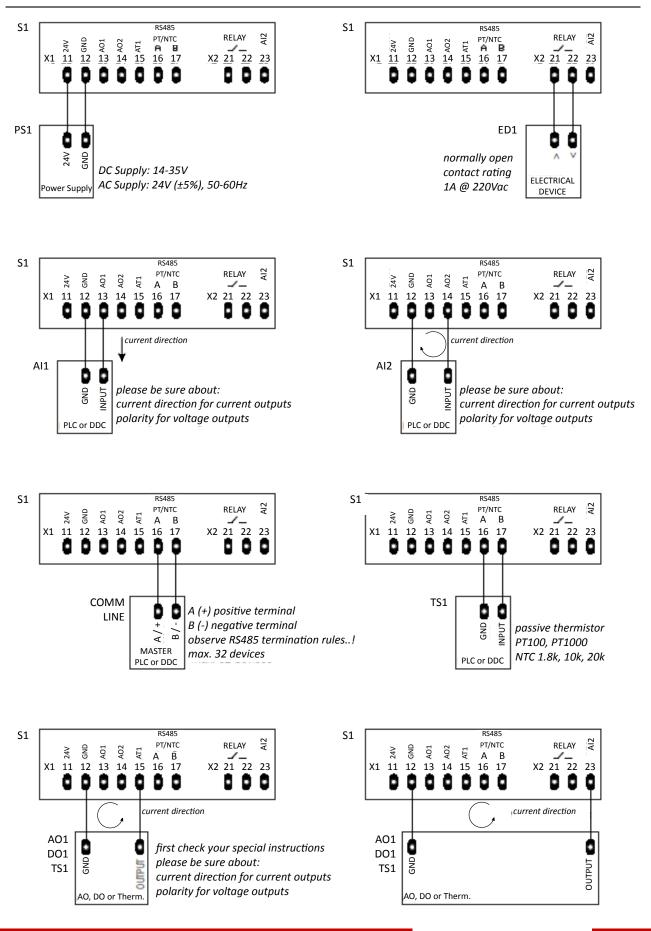

| Range     | COW 13      | Range               | COW 310      |
|-----------|-------------|---------------------|--------------|
| 1 2 3 4 X | 0 - 50 ppm  | 1 2 3 4 X           | 0 - 100 ppm  |
| 1 2 3 4 X | 0 - 100 ppm | 1 2 3 4 X<br>CONFIG | 0 - 300 ppm  |
| 1 2 3 4 X | 0 - 300 ppm | 1 2 3 4 X<br>CONFIG | 0 - 1000 ppm |

| Response            | All types |
|---------------------|-----------|
| 1 2 3 4 X<br>CONFIG | 5 sec.    |
| 1 2 3 4 X<br>CONFIG | 60 sec.   |



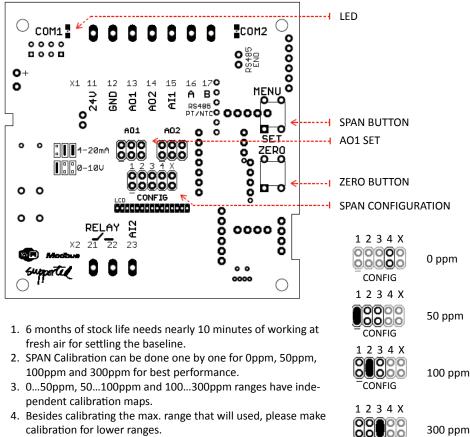


**Transmitter Hardware** 




| COM1 LED        | without relay option, Bead LED, periodically gets ON and OFF with relay option, shows the relay position, lights when contact is closed (X2:21-22)                                                        |                                                                                   |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| COM2 LED        | modbus communication LED, blinks when there is communication                                                                                                                                              |                                                                                   |  |  |  |
| Wi-Fi PORT      | wi-fi port, it is                                                                                                                                                                                         | wi-fi port, it is an advanced option, please contact us for more details          |  |  |  |
| RS485 END       | modbus endir                                                                                                                                                                                              | ng jumper to connect internal 1200hm resistor to the RS485 line                   |  |  |  |
| X1 TERMINAL     |                                                                                                                                                                                                           |                                                                                   |  |  |  |
| 11              | power                                                                                                                                                                                                     | 1435 Vdc or 24 Vac (± %5, 50-60 Hz)                                               |  |  |  |
| 12              | GND                                                                                                                                                                                                       | ground for power and reference for outputs and inputs                             |  |  |  |
| 13              | output 1                                                                                                                                                                                                  | analog output for main measurement                                                |  |  |  |
| 14              | output 2                                                                                                                                                                                                  | analog output for other measurement or duplicated output1 for third party devices |  |  |  |
| 15              | input 1                                                                                                                                                                                                   | universal input for nearby passive field devices                                  |  |  |  |
| 16              | A modbus                                                                                                                                                                                                  | modbus communication positive pair                                                |  |  |  |
| 17              | B modbus                                                                                                                                                                                                  | modbus communication negative pair                                                |  |  |  |
| MENU BUTTON     | press and wait to enter MENU, click to navigate between sub menus one by one after all parameters turns back to main screen                                                                               |                                                                                   |  |  |  |
| AO1 & AO2 SET   | output set as 010 Vdc or 420 mA with jumpers, only for output selectable products,<br>for the fixed output models there is no jumpers,<br>please be sure about the output type and electrical connections |                                                                                   |  |  |  |
| SET BUTTON      | click to change parameters, parameters are automatically set while exiting menu                                                                                                                           |                                                                                   |  |  |  |
| CONFIGURATION   | jumpers to set output range and delay time                                                                                                                                                                |                                                                                   |  |  |  |
| JUMPERS         | please refer to the "jumper reference" sticker on PCB or inside of cover                                                                                                                                  |                                                                                   |  |  |  |
| CAUTION         | never use jumper X!                                                                                                                                                                                       |                                                                                   |  |  |  |
| LCD             | 12x2 LCD for monitoring and setting parameters                                                                                                                                                            |                                                                                   |  |  |  |
| contrast        | adjust the contrast from MENU for a better performance                                                                                                                                                    |                                                                                   |  |  |  |
| brightness      | adjust the brightness from MENU for a better performance                                                                                                                                                  |                                                                                   |  |  |  |
| X2 TERMINAL     |                                                                                                                                                                                                           |                                                                                   |  |  |  |
| 21              | NO contact relay dry contact max. rating 1A @ 220 Vac                                                                                                                                                     |                                                                                   |  |  |  |
| 22              | NO contact re                                                                                                                                                                                             | lay dry contact max. rating 1A @ 220 Vac                                          |  |  |  |
| 23              | input 2 univer                                                                                                                                                                                            | sal input for nearby passive field devices                                        |  |  |  |
| UNIVERSAL INPUT | universal inputs (X1:15 and X2:23) can be digital input as dry contact or analog input as NTC10k, PT1000, 010<br>Vdc or 05 Vdc universal input is an advanced option, please contact us for more details  |                                                                                   |  |  |  |




Dec. 18

# **Electrical Connections**





# **Calibration - General Information**



5. Before any calibration, check CONFIG Jumpers and set to calibration level.

## Calibration - 0ppm, 50ppm, 100ppm, 300ppm

- 1. Open the cover and power the detector, do not close the cover during process,
- 2. Wait for min. 3 minutes for warming up the sensor,
- 3. Use right CO Calibration Gas according to Jumper Settings, 0ppm, 50ppm, 100ppm or 300ppm You may use Fresh Air for 0ppm calibration (which is lower than 1ppm CO),

CONFIG

- 4. Apply the gas for min. 2 minutes with 0.5 lt/min. flow rate,
- 5. Keep pressing for min. 10 seconds to SPAN (MENU) button, LED will light continuously,
- 6. When LED gets OFF, take your finger from the button,
- 7. LED double flashes during ZERO process for 10 seconds,
- 8. The calibration point is an average of 20 measurements between 5th and 10th seconds,
- 9. LED lights continuously for 3 seconds,
- 10. Gas Detector turns back normal condition and works with new calibration setting.

### **Calibration - Factory Reset**

- 1. Keep pressing for min. 10 seconds to ZERO button, LED will light continuously,
- 2. When LED gets OFF, take your finger from the button,
- 3. LED flashes continuously during RESET process for 10 seconds,
- 4. LED lights continuously for 3 seconds,
- 5. Gas Detector turns back to normal condition and works with factory calibration settings.



Dec. 18

# MENU

| AP<br>CONT                | ROL                     | intro screen<br>duration 2 seconds                                                                                                 |                                                                                                                                                   |  |
|---------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CO pp<br>8                | m                       | Main screen, measuring value<br>normal operating mode                                                                              |                                                                                                                                                   |  |
| ENTER                     | MENU                    | press and hold MENU button for entering menu<br>if you skip pressing MENU button before seeing OK, you will be back to main screen |                                                                                                                                                   |  |
| ENTER<br>OK               | RMENU                   | now you are in MENU                                                                                                                |                                                                                                                                                   |  |
| M1 Re<br>EnterS           |                         | 1                                                                                                                                  | Y_MENU, press SET button for entering RELAY_MENU,<br>s MENU button to skip RELAY_MENU and pass to M2_RANGE                                        |  |
|                           | M1a Min.<br>10 ppm <:   |                                                                                                                                    | you can set Min.Set for RELAY_MENU while arrows (< >) are on screen, press SET button for decreasing or MENU button for increasing the Min.Set    |  |
|                           | M1a Min.<br>12 ppm      | .Set                                                                                                                               | wait for 3 sec. after pressing any button, the arrows (< >) are hidden, press MENU button to pass Max.Set, press SET button for editing Min.Set   |  |
|                           | M1b Max<br>22 ppm <:    | Max Set setting is same as Min Set setting                                                                                         |                                                                                                                                                   |  |
|                           | M1c Mod<br>Closed 0.I   |                                                                                                                                    | relay contact action according to min. and max. set points, select with SET button, skip or pass to next screen with MENU button                  |  |
| M2 RA<br>0100             |                         |                                                                                                                                    | ct the RANGE with SET button,<br>or pass to next screen with MENU button                                                                          |  |
| -                         | SPONSE<br>(60sec)       |                                                                                                                                    | ct the RESPONSE time with SET button,<br>or pass to next screen with MENU button                                                                  |  |
| M4 CC<br>5                | ONTRAST                 |                                                                                                                                    | he CONTRAST between 0 to 10 with SET button, default is 5,<br>or pass to next screen with MENU button                                             |  |
| M5 BR<br>5                | RIGHTNESS               | 1                                                                                                                                  | he BRIGHTNESS between 0 to 10 with SET button, default is 5,<br>or pass to next screen with MENU button                                           |  |
|                           | l/Reset<br>Setting      |                                                                                                                                    | ce ID, check the identification datas of the device with SET button,<br>and EXIT the menu with MENU button, you will be back to main screen       |  |
|                           | M6a 0 pp<br>Calibrate?  |                                                                                                                                    | calibration for 0 ppm, press MENU button to pass next menu, for calibration, keep pressing SET button for 5 seconds and wait for 10 seconds,      |  |
| M6b 50 ppm<br>Calibrate?  |                         | -                                                                                                                                  | calibration for 50 ppm, press MENU button to pass next menu, for calibration, keep pressing SET button for 5 seconds and wait for 10 seconds,     |  |
| M6c 100 ppm<br>Calibrate? |                         | -                                                                                                                                  | calibration for 100 ppm, press MENU button to pass next menu, for calibration, keep pressing SET button for 5 seconds and wait for 10 seconds,    |  |
|                           | M6d 300 J<br>Calibrate? | -                                                                                                                                  | calibration for 300 ppm, press MENU button to pass next menu,<br>for calibration, keep pressing SET button for 5 seconds and wait for 10 seconds, |  |
|                           | M6e Rese<br>Factory Se  |                                                                                                                                    | reset to factory calibration, press MENU button to pass next menu, for resetting, keep pressing SET button for 5 seconds and wait for 10 seconds, |  |
| CO pp<br>8                | m                       |                                                                                                                                    | n screen, measuring value<br>nal operating mode                                                                                                   |  |

Automatikprodukter 7



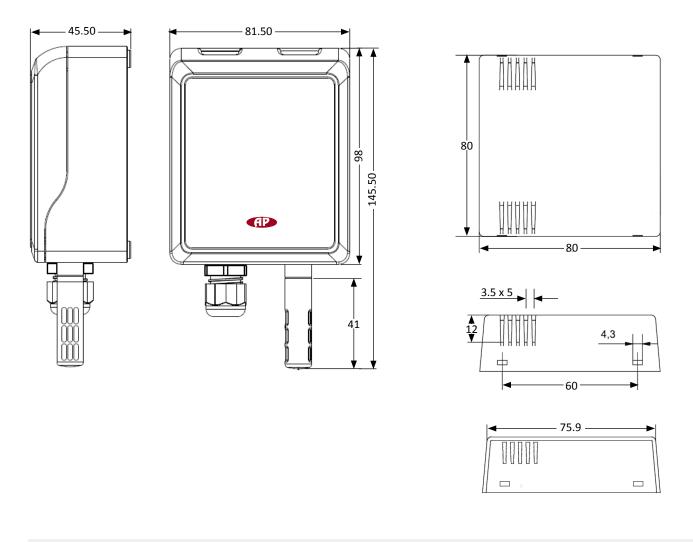
# **Modbus Protocol**

Use Function 3 for Reading and Function 6 for Writing Holding Registers. Register Table starts from Base 1. Default Settings: Modbus ID:1, 9600, 8bit, None, 1.

| Register | R/W   | Range  | Description                                                                    |
|----------|-------|--------|--------------------------------------------------------------------------------|
| 1        | R & W | 1254   | Modbus Address                                                                 |
| 2        | R & W | 04     | Baudrate, 0: 9.600, 1: 19.200, 2: 38.400, 3: 57.600, 4: 115.200                |
| 3        | R & W | 03     | Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1 |
| 4        | R     | 01.000 | CO level as ppm                                                                |
| 5        | R     | 01.000 | CO level as ppm                                                                |
| 6        | R     | 0 or 1 | Relay contact position, 0: OFF/Open, 1: ON/Close                               |
| 7        | R & W | 0 to 4 | Relay Mode, 0:Closed, 1:Open, 2:HighOn, 3:LowOn, 4:Off                         |
| 8        | R & W | 01.000 | MIN SET for Relay                                                              |
| 9        | R & W | 01.000 | MAX SET for Relay                                                              |
| 10       | R & W |        | Blank                                                                          |
| 11       | R & W |        | Blank                                                                          |
| 12       | R & W |        | Blank                                                                          |
| 13       | R & W |        | Blank                                                                          |
| 14       | R & W |        | Blank                                                                          |
| 15       | R & W |        | Blank                                                                          |
| 16       | R & W |        | Blank                                                                          |
| 17       | R & W |        | Blank                                                                          |
| 18       | R & W |        | Blank                                                                          |
| 19       | R & W |        | Blank                                                                          |
| 20       | R & W |        | Blank                                                                          |

| Relay Mode     | < Min. Set | between Min. & Max. Set | > Max. Set |
|----------------|------------|-------------------------|------------|
| Closed / 0.1.0 | OPEN       | CLOSED                  | OPEN       |
| Open / I.0.I   | CLOSED     | OPEN                    | CLOSED     |
| HighOn / 0.X.I | OPEN       | HYSTERESIS              | CLOSED     |
| LowOn / I.X.0  | CLOSED     | HYSTERESIS              | OPEN       |
| Off / 0.0.0    | OPEN       | OPEN                    | OPEN       |

0: Relay Contact is at OPEN position


1: Relay Contact is at CLOSED position

X: Relay Contact is at HYSTERESIS position, OPEN if previous position open, CLOSED if previous position closed,



Dec. 18

## Drawings



## **General information**

When and where is comprehensive monitoring needed to cover a large area? You may fear that leaks could occur over the whole area. One example could be a solvent storage depot. In similar places you have to assume that an area of 20 - 40 m<sup>2</sup> per detector could be affected depending on to what extent the vapours can spread (shelving, obstacles, etc.).

In a garage, the sensors are distributed rather evenly. It is estimated that no dangerously high concentrations would form in a garage between two detectors at the specified alarm thresholds with one detector covering 400 m<sup>2</sup>.

Concern about combustible gases has to be based on similar considerations with 80 - 120 m<sup>2</sup> per detector.

In a brewery, it is assumed that on a floor to be supervised the CO, will spread relatively evenly and close to the floor level.

In a storage depot one detector per 100 m<sup>2</sup> would probably be sufficient. It is important at on-site visits to detect the deeper located areas where  $CO_2$  could accumulate. If there are several such places, each of these areas has to be monitored with (at least) one detector independent of the other detectors. In addition you would have to consider obstacles disturbing uniform spread of vapour.

For a comprehensive monitoring of toxic gases it is important to consider the rate of propagation for this gas. Chlorine for instance, diffuses only very slowly. One detector can monitor a maximum of 10 m<sup>2</sup>.

Ammonia is lighter than air and propagates easily. But if there is moisture somewhere between the leak and the detector, a great deal of ammonia will be bound there and the detector will only detect a small amount of gas.

If there are ice deposits in cold stores, the ammonia will also be bound there and a detector will detect nothing. In this respect there is no general statement for a comprehensive monitoring, but in most applications this is not necessary.



Dec. 18

### Gas monitoring and ventilation control in parking areas

Gas monitoring in parking areas meets two main needs:

- To give a warning when the amount of harmful gases reaches an unhealthy level.
- To ensure that the ventilation control is done in the best and most profitable way, ie for fresh air needs.

#### **Hazardous** gases

Petrol and diesel exhaust fumes emit harmful levels of nitrogen dioxides (NO<sub>2</sub>), hydrocarbons (CH) and carbon monoxides (CO).

As a rule only carbon monoxides and nitrogen dioxides are monitored in parking areas since it is often (wrongly) believed that other gases do not reach harmful levels.

Carbon monoxide is a highly dangerous toxic gas (see table at the top of page 5).

Nitrogen dioxide is a carcinogen.

When considering monoxide from gas monotoring persective it is appropriate to have two alarm levels, where one level, occurs at about 20 ppm, and the other at about 35 ppm.

A gas alert sign or similar can warn of unhealthy carbon monoxide levels at the lower alert level. At the higher alert level, ie critical alarm level, it may be appropriate to allow the system to activate a warning siren.

A detector density of at least 1 detector/400  $\ensuremath{\mathsf{m}}^2$  is would be appropriate.

In case there are diesel vehicles in the parking area, it is important to take other harmful gases into consideration, such as nitrogen oxides and hydrocarbons.

In cases described above, specific monoxide detectors cannot cover the detection needs. Detectors that can detect these gases are required, eg, the GNO, gas detector.

### **Application** areas

- Car repair shops
- Trucks/Indoor
- Parking areas
- Tunnels
- Mines
- Ice Hockey Rinks
- Bus/Lorry Terminals
- Generator rooms
- Garages

### **Ventilation control**

The minimum requirement to be set in ventilation control is to make certain that the gas monotoring facility affects the ventilation in such a way that if harmful gas concentrations occur, the fresh air intakes must increase in order to reduce gas concentrations to reach harmless levels.

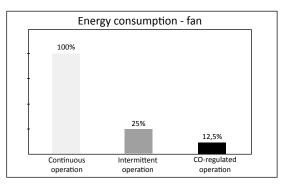
A well-regulated demand controlled ventilation in a parking area not only improves the air quality but it also minimizes the energy consumption by avoiding unnecessary ventilation.

Optimal ventilation with regard to gas concentrations can usually be

achieved by regular ventilation.

In a modern gas monitoring facility there are functions both for alarms (two levels) and controls for air evacuation.

The control options in the gas monitoring facility can be adapted to the control modes of most ventilation facilities.


The gas monotoring facility allows for incrementally controlled ventilation.

#### Example:

At low load, ventilation is running at 1/2-power. If the gas concentration exceeds 20 ppm (level 1), the sensors react and ventilation is controlled is switched over to the 1/1 power.

Staff Alarm - e.g. warning by sirens in the parking area - is given when the concentration exceeds 35 ppm (level 2).

Stepless control via frequency converter controller or via DDC/PLC gives the best energy savings.



By monotoring CO levels and only running the fans when necessary the CO detector becomes a significant energy saver.

Normally parking area ventilation need only be operational in 2 out of 24 hours, which naturally saves a great deal of energy.

### **Poisoning Hazard**

There are several gas that when released in the air uncontrolled can poison and kill people. Common poisonous gases in industry are e.g. ammonia, carbon monoxide and hydrogen sulphide (all the examples listed are also flammable).

Experts within occupational health and medicine estimate the gas concentrations for harmful gases when the adverse impacts are minor.

In Sweden, these so called hygienic levels are set and updated by the Swedish Work Environment Authority.

A distinction is made between the maximum exposure limit, i.e. the maximum value for a 15-minute average exposure, and the exposure limit value, i.e. the maximum value for an 8-hour average exposure.

When monotoring gas it is advisable to let the hygienic exposure limit values provide indications for the choice of alarm levels.

This does not mean however that you necessarily need to adhere to the above described levels.

Alarm levels should be chosen according to how dangerous the gas is and the particular installation conditions.



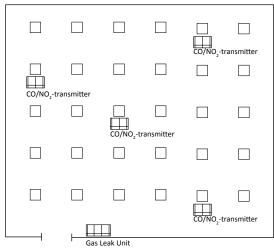
| How carbon monoxide affects people |       |                      |                                             |  |  |  |
|------------------------------------|-------|----------------------|---------------------------------------------|--|--|--|
| Vol-%                              | ppm   | Contact duration     | Symptom med möjliga följder                 |  |  |  |
| 0.02                               | 200   | 2-3 h                | Light headache                              |  |  |  |
| 0.04                               | 400   | 1-2 h                | Severe headache (forehead)                  |  |  |  |
| 0.08                               | 800   | 45 min<br>2 h        | Malfunctions in the body<br>Unconsciousness |  |  |  |
| 0.16                               | 1600  | 20 min<br>2 h        | Malfunctions in the body<br>Death           |  |  |  |
| 0.32                               | 3200  | 5-10 min<br>30 min   | Malfunctions in the body<br>Death           |  |  |  |
| 0.64                               | 6400  | 1-2 min<br>10-15 min | Malfunctions in the body<br>Death           |  |  |  |
| 1.28                               | 12800 | 1-3 min              | Death                                       |  |  |  |

| Emission values for different engine types, as well as hygienic exposure limits of the gases |                           |      |     |                                |                                |                 |        |        |    |  |
|----------------------------------------------------------------------------------------------|---------------------------|------|-----|--------------------------------|--------------------------------|-----------------|--------|--------|----|--|
| GAS                                                                                          |                           |      |     | ppm content<br>petrol exhausts | ppm content<br>diesel exhausts | Hygienic limits |        |        |    |  |
|                                                                                              | petrol and diesel engines |      | ppm |                                |                                | mg/m³           | ppm    | mg/m³  |    |  |
|                                                                                              |                           |      |     |                                | 8 h                            | 8 h             | 15 min | 15 min |    |  |
| NO <sub>2</sub>                                                                              | 25                        | 10,5 | 42  | 100-200                        | 2000                           | 25              | 30     | -      | -  |  |
| со                                                                                           | 155                       | 12   | 13  | 20000-60000                    | 1000                           | 35              | 39     | 50     | 55 |  |
| СН                                                                                           | 15                        | 6    | 4   | 200-1500                       | 500                            | 25-1000         |        |        |    |  |

By using gas detectors with an analog output, 4-20 mA, which sends the signal to a computerized control, regulation and monitoring system, the ventilation control is done in a more refined manner.

Depending on the capacity of the computerized system, the ventilation can be controlled continuously instead of stepwise. One can have a throttle control, optional time delays, breakdown of the ventilation into zones, etc.

| and hygienic exposure limits.<br>Gas concentration in ppm (parts per million). |                                     |                     |                           |                     |                     |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------|---------------------|---------------------------|---------------------|---------------------|--|--|--|
| Gas                                                                            | Lethal dose<br>5-10 min<br>duration | Severe<br>poisoning | Tempo-<br>rary<br>trouble | Max<br>exp.<br>lim. | Av.<br>exp.<br>lim. |  |  |  |
| Ammonia<br>(NH <sub>3</sub> )                                                  | 5.000                               | 2.500               | 250                       | 50                  | 25                  |  |  |  |
| Carbon<br>monoxide<br>(CO)                                                     | 7.000                               | 2.000               | 1.000                     | 100                 | 35                  |  |  |  |
| Petrol                                                                         | 20.000                              | 7.500               | 3.000                     | -                   | 200*                |  |  |  |
| Acetylene                                                                      | 500.000                             | 250.000             | 100.000                   | -                   | -                   |  |  |  |
| * Refers to mg/m <sup>3</sup>                                                  |                                     |                     |                           |                     |                     |  |  |  |


The impact of various gases and vapours on people

## Installation exemple

nstallation in parking area with mechanical ventilation at  $40 \times 40 \text{ m}$  (1600m<sup>2</sup>).

The CO-detectors are placed at 140-180 cm above the floor, evenly distributed over the area, with consideration taken for walls and section dividers.

As a rule of thumb there should be one detector per 400m<sup>2</sup>, the exact number depending on the shape of the area.



We cannot be held responsible errors in the manual/datasheet and reserve the right to correct any errors and to make product improvements, which may affect the accuracy of the manual/datashet, without prior notice.

Dec. 18